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Due to the discrepancy between simulated energy consumption and measured data, it is essential to cal-
ibrate building energy models to improve its fidelity in evaluating the performance of retrofitting.
Currently, most calibration methods are conducted manually to minimize this discrepancy, heavily rely-
ing on the knowledge and experience of analysts to discover a reasonable set of parameters. Because of
the myriad independent and interdependent variables involved, the reliability of the entire simulation is
largely undermined. In the presented paper, we propose a complete and fluent optimization automated
calibration flow by introducing the mathematical optimization method (Particle Swarm Optimization is
adopted) into the building energy model calibration process, thus leveraging the advantages of the effi-
ciency and flexibility of the automated computer procedure. This approach is also characterized by its
inclusivity, for it is compatible with other advanced manual methods and able to largely assist the
experts in improving the efficiency of tuning relative input parameters. Moreover, a case in Shanghai
is presented to verify the validity of the proposed method. After calibration, the simulation model
demonstrates a satisfactory predicting accuracy. The calculated electricity consumption from the
HVAC, lighting and equipment matches the actual monitored data with 11.6%, 7.3% and 7.2% CV
(RMSE), respectively, and the total electricity consumption is within 6.1%.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Original significance

Energy problems have become increasingly hot topics in the
world, and the relationship between the demand and supply of
energy use has also been of great concern. Buildings contribute
significantly to the total energy use on the global scale and are
responsible for 40% of energy consumption and one-third of Green-
house Gas (GHG) emissions [1–4]. Therefore, buildings are impor-
tant in the overall strategy of energy conservation and emissions
reduction; energy goals will be achievable if we focus more on
the retrofitting of buildings. At the same time, various reports
and researches indicate that some adverse factors, such as defec-
tive building design without sufficient consideration of energy
conservation, the degeneration and faults of the HVAC system,
and changes in manipulation strategies, all result in the unsatisfac-
tory energy efficiency of building operation. To ensure the practical
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Fig. 1. The hierarchy of various source information [23] (*BMS: Building Manage-
ment System).

Table 1
Acceptable range of monthly data calibration [24–26].

Index ASHRAE 14 IPMVP FEMP

ERRmonth ±5% ±20% ±15%
ERRyears – – ±10%
CV (RMSEmonth) 15% 5% 10%
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contribution of buildings, it is critical to introduce several retrofit
programs in existing buildings immediately. Mills et al. [5,6]
believed the United States will achieve 16% median energy savings
if the operation of existing buildings is improved. If these retrofit
methods associated with building envelopes, mechanical equip-
ment, and lighting systems are applied in commercial buildings
in the USA, the reduction in money conversed from the potential
energy savings will reach 30 billion in approximately 2030. In
China, building energy efficient retrofitting is also significant. In
the north of China, the floor area of inefficient existing residential
buildings is 4.16 billion m2, accounting for 76.33% of the total
northern residential building [7]. To address this issue, the Chinese
government released the ‘‘Green Building Action Plan” [8], aiming
at retrofitting 570 million m2 of existing buildings by 2015. Mean-
while, subsidies of approximately $7.0/m2–$8.6/m2 are provided to
facilitate implementation of this plan [9].

1.2. Building energy model calibration

Before initiating the building retrofit program, it is necessary to
evaluate the cost-efficiency of various proposed energy saving
measures. The main approaches usually applied to evaluate the
building energy consumption are measurement and simulation
[10]. Due to its convenience and efficiency, the latter, building
energy simulation (BES), is always recommended by the research-
ers [11–13]. However, although this technique has been developed
mature gradually for many years, one problem still exists. That is
the discrepancy between the calculated results in the energy sim-
ulation and the monitored data in actual buildings [14]. This devi-
ation mostly results from the differences between the initial design
and practical operation [15], such as using default/standard values
for parameters [16], which are difficult to be described in the
building energy model. In most situations, it is essential to cali-
brate the model to at least roughly match the given actual building,
thus increasing its fidelity in the energy evaluation. Only if the
energy model is properly calibrated, could it be applied reliably
to implement such studies as evaluating the potential energy sav-
ing from various energy conservation measures (ECMs), or predict-
ing the future energy consumption.

The building energy model calibration involves tuning miscella-
neous input parameters to minimize the aforesaid discrepancy.
This process is usually conducted based on various available mon-
itored data of energy behavior [17,18]. If the virtual monitoring
system is well-established in the target building and can record
hourly energy consumption, open-closed state data on time scales
[19–21] and the operational data in different zones or systems on
spatial scales [22], it will greatly facilitate the analysts and increase
the efficiency and accuracy of the calibrated model. Coakley et al.
[23] summarized the hierarchy of some source information in his
research, as presented in Fig. 1. Apparently, the smaller time and
spatial scale the monitored data are divided into, the more accu-
rate and difficult it is to achieve the synthetic calibration [19].
However, at present most buildings are not equipped with the
monitoring system, and the monthly end-use of energy consump-
tion comes available in a better situation.

So the question comes: What constitutes a qualified building
energy model? Its accuracy is currently confirmed by the fact that
outputs generated by the model should closely match the mea-
sured utility data, which also conversely relies on how accurate
the inputs could represent the properties of the given actual build-
ing [22]. To address the errors between the model simulation
results and the measured data, Error (ERR) (calculated by Eqs. (1)
and (2)) and Coefficient of Variation of Root Mean Square Error
(CV(RMSE)) (calculated by Eqs. (3)–(5)) are specified by three
relative guidelines: American Society of Heating, Refrigerating
and Air-Conditioning Engineers (ASHRAE) Guideline 14 [24],
International Performance Measurement and Verification Protocol
(IPMVP) [25], and Measurement and Verification of Federal Energy
Projects (FEMP) [26], as presented in Table 1. Some researchers
[17,27] validate and recommend Mean Bias Error (MBE) and CV
(RMSE) for the tolerance evaluation of model calibration.

Apart from the authoritative criteria for error evaluation, there
is no uniform calibration method [28–30]. Nevertheless, for the
procedure of calibrating model, some experts have made their
own clear descriptions [24,28,31–34], of which the most detailed
and prevailing is from ASHRAE-14: (1) Make a calibrated simula-
tion plan, (2) Collect data, (3) Input data and run the model, (4) Cal-
ibrate the simulation model, (5) Tune the error, (6) Calculate the
energy, (7) Build a baseline model and post-retrofit model, (8)
Summarize and report.

ERRmonth ð%Þ ¼ ðM � SÞmonth

Mmonth

� �
� 100% ð1Þ

ERRyear ð%Þ ¼
X
month

ERRmonth

Nmonth

� �
ð2Þ

RMSEmonth ¼
X

month
ðM � SÞ2month

Nmonth

" #1=2

ð3Þ

CVðRMSEmonthÞð%Þ ¼ RSMEmonth

Amonth

� �
� 100% ð4Þ

Amonth ¼
P

monthMmonth

Nmonth
ð5Þ

where M is the measured electricity (kW h), S is the simulated elec-
tricity (kW h), Nmonth is the number of annual utility bills, and Amonth

is the averaged measured electricity (kW h).
The specific calibration method of establishing the energy

model, namely how the process of adjusting the inputs in the mod-
els is conducted, is absolutely the focus of the current research.
Experts and scholars have explored some significant achievements
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in the formal and systematic calibration methodologies. According
to the reviews from Reddy [28], Coakley [30] and Fabrizio [29], a
large number of researchers concentrate on manual calibration,
with different nuances. This approach largely relies on the model-
ers’ professional experience and judgment, which guide them to
empirically perform iterative tuning of the model input parame-
ters. Manual calibration does not mean continuous fudging or
trial-and-error process solely conducted through the human’s
brain, more like an art. It also requires reasonable logic, methods
and tools. A typical method is to obtain measured data through
additional approaches, such as energy consumption bills [27], on-
site visits [35], interviews with operators [17], short-term energy
monitoring (STEM) [36–38], and operational or environmental
data collection [39]. These data are used as supplemental evidence
to improve the calibration. Yoon et al. [17] collected the basic data
needed for simulation (including building data, utility data, and
weather data) and developed an initial corresponding energy
model. At this step, the CV(RMSE) of electricity reached 24.9%,
exceeding all recommended criterion. After that, they analyzed
the base load consumption (weather independent electricity or
gas usage) and calibrated the model in swing-season, referring to
the data from monthly energy consumption and STEM. Then, they
conducted additional on-site visits and interview, confirming the
internal loads - the lighting, equipment, and people, through which
they continued to complete the calibration for the building energy
model in the heating/cooling season. The emphasis of this step is
on the HVAC system. Eventually, the CV(RMSE) of electricity
dropped to 3.6%. Later, this type of calibration method gradually
gained comprehensive acceptance and various extensions
[17,20,27,39,40]. In addition to this method, there are some
researchers developing alternative approaches applicable in differ-
ent scenarios. To display the differences between simulated and
measured results intuitively, Kandil et al. [41] introduced the cali-
bration signature in the building energy model calibration. This
signature is defined as the normalized plot as a graphical represen-
tation. Including calibration signature [17,42], the graphical tech-
niques have been repeatedly applied in building energy model
calibration [21,43–45]. To guarantee the simultaneous accuracy
for multiple levels of simulation, Yang et al. [22] developed a
simultaneously multi-level calibrating framework, including
building-level, ECM level and zone-level. They also constructed
the classification of building parameters to more clearly under-
stand and evaluate the parameters to be monitored and adjusted.
Using the previous experience and knowledge as references, Raf-
tery et al. [20] proposed an evidence-based approach, which trace
the previous detailed versions of calibration to help make adjust-
ments to model parameters. This methodology requires additional
visible inspection for verification. For the situation that the differ-
ent types of electricity data are mingled in the energy bills, Ji et al.
[19] introduced the Fourier series model to disaggregate the hourly
non-HVAC electricity consumption from power meters and finally
developed a bottom-up calibration method based on the hourly
energy consumption data.

The advantages of manual calibration are the full use of the
knowledge of professionals, and some researchers even consider
to compile these experiences into the knowledge base [20] to
achieve greater promotion and applicability. However, the draw-
back also exists. Because the manual calibration wholly relies on
hard-operated skill, adjusting the parameters involved in this pro-
cess tends to consume a large amount of time, which results in the
risk of possible inaccuracy. In addition, because of the changeable
operation of buildings, the process is even more time-consuming
when conducting periodic synchronous calibration. Consequently,
to increase the working efficiency, it is natural to think about tak-
ing advantage of the computers to implement the manual process
with the aid of automated means. This strategy is developed as
automated calibration, which is defined as the approaches without
consideration of user driven [30].

The main commonness of automated calibration is to search out
a good fitting set of inputs through computational program. Con-
sidering the evidence that the process of manually tuning the
parameters to match the simulated model and actual building
can be recognized as an optimization problem, researchers started
to address the ability of numerical optimization. Actually, mathe-
matical optimization method, usually combining numerical simu-
lation and a mathematical method, has been widely and
successfully used in the other fields of the building life circle, such
as sustainable design and operational control [46,47]. This process
is generally integrated in specialized optimization software called
Genopt, which is an open platform developed to help determine
optimal solutions [48]. To perform the optimization in the calibra-
tion process, some forms of objective functions are established to
visualize the difference between the simulated and the measured
data and is then considered as the basis to calibrate the target
model. During the optimization process, the objective equation is
different with the variation among direct use of ERR, MBE, RMSE,
and CV(RMSE) between simulated and measured data [30,49,50].
Some other analysts tend to apply the weighted function, combin-
ing the CV(RMSE) and Coefficient of determination R2 to minimize
the error and ensure the goodness of fit simultaneously. The target
basis for optimization also varies, some with indoor temperature
[51–54] and some others with energy consumption [49,50]. For
the detailed optimization-based automated approaches, Sun et al.
[55] proposed a universally feasible statistics-based calibration
framework for building energy simulation: sensitivity analysis
(evaluating the influence of variables on building energy), recogni-
tion analysis (filtering out the subset of parameters to be tuned),
mathematical optimization (calibrating the initial model), and
uncertainty analysis (determining the possible range of variables).
Later, Tahmasebi et al. [52–54] and Taheri et al. [51] proposed fur-
ther improved method and process for determining the variables
to be tuned. With the aid of their own knowledge and experience,
they selected an initial set of 23 parameters, including a range for
each one. Then, Monte Carlo sensitivity analysis was applied to
screen out the subset of 4 influential parameters to be adjusted.
Coakley et al. [56] performed a Latin-Hypercube Monte Carlo
(LHMC) analysis to develop the bounded grid search, and then sim-
ulated each set of variables to be tuned and calculated the statisti-
cal goodness-of-fit one-by-one specifically. These solutions were
eventually ranked and filtered into the top 100 as the final ‘set of
calibrated solutions’. Meanwhile, after determining the range of
each variable, Monetti et al. [49] performed the mathematical opti-
mization process using the software GenOpt. In order to reduce the
time consumed in the process of numerical optimization, Zheng
et al. [57] applied the meta-model technique, which integrated
sensitivity analysis in the calibration. They developed a database
of calculating samples with the parameters varying around the
nominal values. Based on that, the sensitivity analysis and opti-
mization is conducted in 2 h and 2–3 s respectively. But there is
a premise underlying this approach, namely the best-fitting set
of inputs exists in the pre-developed database. Another major defi-
ciency of this approach is that it is more exclusive and wholly
neglect the knowledge of experts.

The application of numerical optimization in the calibration
process facilitates engineers’ and researchers’ works greatly, but
sometimes this type of automated calibration method tends to
abstract the physical objective to a pure mathematical problem,
neglecting some physical meanings of actual buildings. Indiscreet
overuse could result in accurate matching mathematically, but
inaccurate matching physically. This is just the reason why some
researchers criticize the automate calibration, and why it is
developed slowly. Therefore, it should be noted that the automatic
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optimization method of model calibration does not act as the role
of replacing manual calibration that includes the professional
knowledge and experience of researchers and experts. This is one
of the reasons for introducing this paper, where the orientation
of the numerical optimization method in calibration process is
exhibited explicitly. The numerical optimization automated cali-
bration presented in this paper is more likely to act as a supple-
mental method to optimize the existing manual calibration by
transforming the manual adjustment to the automated process,
thus greatly improving the accuracy and efficiency of the calibra-
tion. Another reason is that with the improvement of the building
monitoring system, sub-meter recording of the energy use has
emerged in more and more buildings, which further promotes
the fidelity of building energy model. In contrast to the previous
optimization-based calibration, the new calibration approaches
apply the indoor temperature or single energy data as the variables
in the cost function. The procedure of these sub-metered data
(energy use of lighting, equipment, cooling, and heating) applica-
tion and the method of simultaneous calibration are also
presented.

In this paper, we first systematically expatiate the automated
optimization calibration methodology. Since the optimization
method has better efficiency if fewer parameters are included in
the tuning process [28], we complete the sensitivity analysis [58]
in advance. In addition, the result of sensitivity analysis is an
important reference for the decision on weighting coefficients of
the objective function in the automated optimization calibration.
For the detailed method applied in the optimization program,
any of optimization algorithms (such as Particle Swarm Optimiza-
tion (PSO) or genetic algorithms (GA)), of which the goal is to find a
set of parameters that meet certain objective results, can be used.
We choose PSO in this paper and compile the external optimization
program with it. Next, an actual case in Shanghai is presented to
verify the validity of the proposed method. Finally, we discuss
and explore the scope and limitations of this method.
2. Calibration methodology

The proposed calibration method needs to be resolved to build a
robust and reasonable model, as presented in Fig. 2. The main steps
in this paper are the sensitivity analysis (finding the most influen-
tial parameters) and automated optimization calibration (using
particle swarm optimization), which are specified as follows.

2.1. Sensitivity analysis of the input parameters

The selection of the input parameters (including weather,
envelope, air conditioning system, and operating schedule) is an
essential part of the calibrated simulation. Sensitivity analysis is
an effective tool to assess the impact level of input parameters.
Additionally, sensitivity analysis is suitable for the preparatory
work of building simulation.

2.1.1. Building model
A typical office building in Shanghai is built using eQUEST for

sensitivity analysis. The building has 25 floors with a height of
4.20 m and single standard floor space of 1750 m2. The VAV (vari-
able air volume) system is adopted, and the building uses water-
cooled centrifugal chillers for cooling and gas boilers for heating.
All system parameters are set according to ASHRAE Standard
90.1-2007 [59] and the Chinese design standard for the energy effi-
ciency of public buildings [60]. The energy consumption in this
study indicates electricity use. The sensitivity analysis based on
such typical model can obtain the basic characteristics of energy
use for most office buildings in Shanghai.
2.1.2. Input parameters and evaluation index
According to Lam [61] and Reddy [62], the annual energy con-

sumption of office buildings is sensitive to the fenestration, inter-
nal loads, temperature set points, HVAC plant efficiency. In
Shanghai, the VAV system is universally applied in office buildings.
To explore the influences of inputs on the building simulation
model, based on the results of previous researches, we extend
the number of studied objects to 13 by three parts – envelope, inte-
rior load, HVAC system (see Table 2). Moreover, these 13 parame-
ters are suitable for the practical maneuverability and the guidance
of engineering projects.

The energy source of office buildings in Shanghai is mainly elec-
tricity and gas, of which the gas is used for domestic hot water and
space heating. Because the data of heating boilers are incomplete
in the monitoring system, the gas consumption will not be dis-
cussed in this paper. But the relative electricity consumption of
the distribution system is still included. In addition, some building
physical parameters are taken into the consideration, though it is
difficult to change them after the building was built as we know.
The reason is that the data from the original design specifications
and drawings are usually inaccurate, so it is also necessary to
adjust them in the calibration process to improve the fidelity of
the building model.

The sensitivity analysis is performed using the Morris method.
In each run of calculating the building energy change, only one
input parameter is given a new value, while the others remain
unchanged. Each variable is changed within a defined range of pos-
sible values.

To explicitly identify the impact of different input factors on the
energy consumption, we calculate P (defined as the energy con-
sumption variation value per unit area) and Q (defined as the
energy consumption variation rate per unit area) in Eqs. (6)–(9)
to measure the sensitivity of different energy use, such as the total
system (defined as A), air conditioning system (defined as B), light-
ing system (defined as C), and equipment (defined as D). The eval-
uation indexes are given as follows.

Total energy consumption variation value per unit area:

PAj
¼ Aj � A1

Xj � X1
ð6Þ

Average total energy consumption variation value per unit area:

PA ¼ 1
n

Xn
j¼1

PAj
ð7Þ

Energy consumption variation rate per unit area:

QAj
¼ Aj � A1

A1
=ðXj � X1Þ ð8Þ

Average energy consumption variation rate per unit area:

QA ¼ 1
n

Xn
j¼1

QAj
ð9Þ

where Xj is the single-factor value, Aj is the total energy use corre-
sponding to Xj, and n is the number of varying values of the input-
ting single-factors. A1 and X1 is the basic reference, so Aj-A1 and Xj-
X1 are the changes of the total energy use and the inputting value
respectively. Other definitions, such as the energy consumption of
the air conditioning system, lighting system and equipment, are
similar as above.

2.1.3. Sensitivity analysis results
The external wall is one of the main parts of the envelope struc-

ture, the U-value of which directly affects the heat transfer charac-
teristics of the indoor and outdoor environment. The results of the
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Fig. 2. Schematic diagram of the automated model calibration methodology.

Table 2
Input parameters of the building energy model.

Category Input parameters

Envelope Roof
U-value

External
wall
U-value

Window
U-value

Shading
coefficient
(SC)

Window-
wall ratio

Interior loads Lighting
density

Equipment
density

Occupant
density

HVAC system Cooling
set point

Fresh air Chiller
COP

Fan
efficiency

Pump
efficiency
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sensitivity analysis are illustrated in Table 3. The average variation
of the total annual electricity use per unit area is 0.67 kW h, and
the variation rate is 0.64%, which means that when the heat trans-
fer coefficient of the external walls increases 1.00 W/(m2 K), the
average total annual electricity use per unit area increases by
0.67 kW h. Therefore, the heat transfer coefficient of the external
wall has a significant influence on the building electricity
consumption.
Table 3
Sensitivity analysis of the external wall U-value.

External wall U-value
X/[W/(m2 K)]

j = 1 j = 2 j = 3 j = 4 j = 5
0.50 1.00 1.50 2.00 2.50

A/[kW h/(m2 yr)] 105.65 105.94 106.31 106.70 107.14
B/[kW h/(m2 yr)] 40.76 41.04 41.42 41.81 42.24
PA/[kW h/(m2 yr)] – 0.58 0.66 0.70 0.74
PA/[kW h/(m2 yr)] 0.67
PB/[kW h/(m2 yr)] – 0.56 0.66 0.70 0.74
PB/[kW h/(m2 yr)] 0.67
QA/% – 0.55 0.62 0.66 0.71
QA/% 0.64
QB/% – 1.37 1.62 1.72 1.82

QB/% 1.63
Using the same analysis method, we determined the heat trans-
fer coefficient of the other input parameters, respectively, and con-
ducted the modelling calculation. The corresponding results are
summarized in Tables 4–6.

From Table 4, we can conclude that the sensitivity of the roof is
the smallest among the five factors, whereas the other 4 factors
significantly influence the electricity consumption. This is because
the typical model is established as a high-rise building, and the
area of the roof is relatively smaller compared to the whole build-
ing area. Particularly, for the typical office buildings in Shanghai,
lighting density is usually fixed, weakly linked with the window-
wall ratio, so we do not consider it into sensitivity analysis for typ-
ical buildings in this paper.

In Table 5, if the lighting (W/m2), equipment (W/m2) and occu-
pant density (m2/p) increase, the corresponding electricity use will
also increase. In addition to influencing the lighting electricity con-
sumption, the lighting density can affect the electricity use of air
conditioning system because the lighting devices gradually deliver
heat into the indoor air, which could affect the operation of the air
conditioning system. A similar situation can also be found for the
equipment density. Therefore, internal loads can have a significant
impact on electricity consumption.

As shown in Table 6, the electricity consumption of the air con-
ditioning system generally increases with the increase of fresh air
and decreases with the increase of the cooling set point, chiller
COP, fan efficiency, and pump efficiency. Among the five parame-
Table 4
Sensitivity analysis of other envelopes.

Input QA=% QB=%

Roof U-value 0.02 0.05
Windows U-value 0.22 0.58
SC 0.16 0.45
Window-wall ratio 0.14 0.36



Table 6
Sensitivity analysis of the air conditioning systems.

Input QA=% QB=%

Cooling set point �1.90 �4.74
Fresh air 0.22 0.60
Chiller COP �5.23 �12.10
Fan efficiency �0.12 �0.30
Pump efficiency �0.19 �0.48

Table 5
Sensitivity analysis of internal loads.

Input QA=% QB=% QC=% QD=%

Lighting power density 3.42 1.51 9.67 –
Equipment power density 3.03 1.49 – 9.96
Occupant density �2.22 �5.21 – –
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ters, the sensitivity of chiller COP is the most significant, and the
impacts of the fan efficiency and pump efficiency are the weakest.
These results are related to the given air conditioning system.

According to the analysis results in this section, the sensitivity
of the envelope is relatively lower compared to the other selected
factors, such as the lighting, equipment and occupant density. In
addition, the sensitivity of the chiller COP is quite high.

The rank of average sensitivity coefficients of influential input-
ting parameters is listed in Table 7.

2.2. Optimization calibrated simulation

During modelling, the complexity and accuracy of the calibra-
tions rely on the building information and sub-metered energy
use bills, which will determine what input parameters should be
tuned and how these works are developed during the calibration.
The monitored data are divided into four types of parts, including
lighting, equipment, cooling, and heating, of which the former two
are applied through rule estimation to be transformed to internal
loads to populate the initial model, and the latter two are utilized
for other variables’ calibration via some type of optimization
method, namely, PSO.

2.2.1. Rule estimation
Rule estimation deduced from the theoretical analyses could

discover the cause and the solution of the problems.
When the manually calibrated simulation is performed, the dis-

crepancy between the actual and the simulated data implies the
necessity to tune the corresponding input parameters. For exam-
ple, during the course of a specific operation schedule, the lighting
Table 7
List of influential inputting parameters for the typical office in Shanghai.

Items Subitems Average sensitivity coefficients

QA=% QB=% QC=% QD=%

Envelopes External wall U-value 0.64 1.63 – –
Roof U-value 0.02 0.05 – –
Windows U-value 0.22 0.58 – –
SC 0.16 0.45 – –
Window-wall ratio 0.14 0.36 – –

Internal loads Lighting power density 3.42 1.51 9.67 0.00
Equipment power density 3.03 1.49 0.00 9.96
Occupant density �2.22 �5.21 0.00 0.00

HVAC systems Cooling set point �1.90 �4.74 – –
Fresh air 0.22 0.60 – –
Chiller COP �5.23 �12.10 – –
Fan efficiency �0.12 �0.30 – –
Pump efficiency �0.19 �0.48 – –
electricity consumption is only related with the lighting density in
the model. Therefore, a simple approach to reduce the error is to
compare the actual and simulated lighting electricity consumption
and then to tune the lighting density. A similar procedure can also
be observed in the calibration work of the equipment electricity
consumption. Thus, the rule estimation will improve the calibra-
tion efficiency by adding simple rules to the automatic calibration
program at the initial stage.

2.2.2. Numerical optimization
PSO is selected as the algorithm used for the numerical opti-

mization in this paper. This specific optimization technique was
first proposed by Kennedy and Eberhart in 1995 [63,64]. The basic
idea is to simulate the social behavior of a bird flock.

In the algorithm, the optimized solution for each issue is a bird
– here typically called particles – in the search-space. Each particle
has a fitness value determined by an optimized function and a
velocity showing the direction and distance, searching in the solu-
tion space according to the optimizing particle. The particles are
initially placed at random positions and finally find the optimized
solution with the iterative method. In every iterative process, the
particle updates itself by two vectors. The first one, called the per-
sonal best and represented by pBest, is the optimal solution found
by this particle itself. The other one, called the group best and rep-
resented by gBest, is the optimal solution found by the whole
group. In addition, the local best represents the optimal solution
in its neighboring particles instead of the whole group.

The information of particle i can be denoted by a D-dimensional
vector. The current position and velocity are Xt

i (Xt
i1, X

t
i2; . . . ;X

t
iD)

and Vt
i (Vt

i1, V
t
i2; . . . ;V

t
iD), respectively, both of which are selected

randomly at the initial stage and then iteratively updated accord-
ing to Eqs. (10) and (11).

Vtþ1
id ¼ wVt

id þ C1Rand
t
1 pBesttid � Xt

id

� �
þ C2Rand

t
2 gBesttid � Xt

id

� � ð10Þ

Xtþ1
id ¼ Xt

id þ Vtþ1
id X ð11Þ

In Eqs. (10) and (11), d stands for the dimensions of the solution
space. t is the iteration sequence. pBest is the personal best, the
optimal solution found by the particle itself. gBest is the group best,
the optimal solution found by the whole group. w is the inertia
weight used to control the influence of the previous velocity on
the current one. C1 and C2 are the acceleration coefficients, adjust-
ing the step-size of researching. Suitable C1 and C2 balance the con-
vergence speed and the optimization effect. Randt

1 and Randt
2 are

two uniformly distributed random numbers generated indepen-
dently within [0, 1] for the dth dimension. The standard procedure
of particle swarm optimization is illustrated in Fig. 3.

2.2.2.1. Optimization constraints. There are some constraints in
optimization problems of calibration because simulation models
are built for practical applications, and the input parameters must
be set to reasonable value ranges. These ranges heavily rely on the
knowledge and experience of researchers and can be adjusted
according to the calibrated results.

Apart from the fixed parameters of the software itself (such as
the calculating method of heat and mass transfer), the input
parameters can be divided into two categories:

1. Operational schedule. It contains set points of indoor tempera-
ture, on-off of lighting and equipment, etc. These parameters
consist of a sequential set of data with highly varying random-
ness. The human behavior is characterized by particularity and
instantaneity [65], so it is difficult to automatically calibrate



Table 8
Input parameters involved in the automatic calibration.

Parameters Lower limit Step size Upper limit

External wall U-value [W/(m2 K)] 0.30 0.10 1.50
Windows U-value [W/(m2 K)] 1.50 0.50 6.50
Windows SC value 0.30 0.05 0.70
Lighting [W/m2] 5.00 2.00 25.00
Equipment [W/m2] 5.00 2.00 30.00
Occupant density [m2/p] 5.00 1.00 20.00
Pump efficiency 0.50 0.05 0.95
Chiller COP 3.00 0.50 6.00
Boiler efficiency 0.50 0.05 0.95
Fan efficiency 0.50 0.05 0.95
Fresh air [m3/(p h)] 20.00 3.00 40.00
Heating set point [�C] 16.00 1.00 24.00
Cooling set point [�C] 20.00 1.00 28.00

Initialize positions and velocity of 
particles randomly

Calculate the pBest and gBest

Update the positions and 
velocities of particles

Calculate the fitness of current particle 
and compare it with pBest and gBest

gBest meets the standard or 
cycle index reaches the limit?

Calculate the results and 
output the gBest

YES

NO

Fig. 3. Standard procedure of particle swarm optimization.
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accurately. Therefore, in this paper, we fix the schedule with
inputting the established parameters from the data of investiga-
tion and ASHRAE 90.1.

2. Physical and system features of buildings. This category
includes transfer coefficients of the envelope, COP of chiller,
etc. These parameters are the main research objectives and will
be selected as the candidate list for optimization-based auto-
mated calibration in this paper.

Based on the sensitivity analysis, the information of the input
parameters involved in the automatic calibration in this paper is
shown in Table 8.

The range of parameters and the step size can be tuned accord-
ing to the practical situation. Minimization of the number and the
range of the tuned parameters lead to more accurate calibration
results. In the extreme ideal situation, the proper narrow range
of parameters will generate the unique objective solution. A longer
step may result in a higher convergence speed but a lower accuracy
of calibration, whereas a shorter step may result in higher accuracy
of the calibration but a lower convergence speed. Therefore, the
calibrated simulation must be properly performed to balance
between the convergence speed and the calibration accuracy. The
determination of step size in this paper refers to the accuracy of
calibration and the convergence speed.
2.2.2.2. Optimization goal. The optimization goal is the objective
function of the optimization algorithm to guide the direction of
optimization and to determine the boundary conditions. This paper
selects CV(RMSEmonth) as the optimization goal to give an error cri-
terion for iterative termination, as shown in Eqs. (3)–(5).

The objective function is illustrated in Eqs. (12), where fobjmeans
the objective function, CV(RMSEtotal-elec) and CV(RMSEtotal-gas) are the
variation coefficient of the root-mean-squared error of the monthly
total electricity and gas consumption respectively. The other simi-
lar variables, CV(RMSEhvac), CV(RMSElight), CV(RMSEequipment) are also
corresponding to the monthly electricity consumption of HVAC,
light, and equipment. The values of CV(RMSEmonth) can describe
the data discreteness. Ki (i = 1, 2, . . . , 5) are the weight coefficients
of the corresponding objectives to determine which parameter will
be optimized during the calibration using the objective function. Ki
(i = 1, 2, . . . , 5) 2 [0, 1], and K1 + K2 + K3 + K4 + K5 = 1.

f obj ¼ K1CVðRMSEtotal�elecÞ þ K2CVðRMSEhvacÞ
þ K3CVðRMSElightÞ þ K4CVðRMSEequipmentÞ
þ K5CVðRMSEtotal�gasÞ ð12Þ

2.2.2.3. Acceptable range for errors. One of the three ranges shown
in Table 1 must be selected for calibration. This paper adopts CV
(RMSE) in the ASHRAE-14 Standard as the assessment criterion.

In this paper, the development of an automatic calibration pro-
cedure adopts the ASHRAE-14 Standard by default. The tolerance
range can be tuned in the following work. A decrease of the toler-
ance standard results in more accurate results from the calibrated
model but requires a longer computation time.

2.2.3. Coupling of the optimization algorithm and energy simulation
software

When the PSO algorithm is performed in the automatic calibra-
tion for building energy consumption, several loop iterations are
needed to determine the solution for meeting the acceptable
demand in the given range of input parameters. The optimization
algorithm exchanges the data with the building energy simulation
software (DOE-2) in every iterative computation.Each iteration
loop includes the following steps:

(1) According to the previous error, the optimization algorithm
program can produce an updated parameter group (random
generation in the initial iteration);

(2) The updated parameter group is written into the input file,
and then the new building energy model is established;

(3) Corresponding results are calculated, output and read
through the energy simulation software. The deviation
between actual and simulated data is then compared;
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(4) The new error results are fed back to the optimization algo-
rithm program.

The coupling approach is achieved using an external program.
The optimization process and the DOE-2 calculation are relatively
independent, but the input and output parameters may exchange
and influence each other. Fig. 4 illustrates the schematic diagram.

When the optimization calibrated simulation is conducted, the
following steps are included:

(1) The PSO algorithm randomly generates a particle swarm,
and every particle represents an input parameter group;

(2) The external program updates the information of the ‘‘inp
file” with the new data group and then creates a new ‘‘inp
file”;

(3) The computational core of DOE-2 is manipulated by the
external program to load the new input file and simulate
the new results;

(4) The external program reads the simulated energy consump-
tion from DOE-2 and compares it with the actual one built
beforehand. The error is calculated and then sent back to
the PSO algorithm, which generates a new particle swarm.

This procedure loops until the error meets the demand or the
number of iterations reaches the limit.

To realize this methodology, we compiled an external computa-
tional program, coupling the optimization algorithm and energy
simulation software. This program is developed on C++, specific
to the building energy simulation with the core of DOE-2. The
interface is shown in Fig. 5.

3. Case Study

To verify the reliability and feasibility of the optimization-based
automatic calibrated simulation program in this paper, we built a
model using eQUEST for an existing building in Shanghai and used
DOE-2 for the energy simulation.

3.1. Case description

The building, located in Shanghai, is 91.2 m high and has 19
floors above ground with a height of 4.8 m. The total area is
approximately 20,780 m2. The whole building utilizes an air-
cooled heat pump for both space cooling and heating, with 10 �C
cooling water temperature in summer and 38 �C heating water
temperature in the winter. For the air supply part, a VAV system
is adopted. Because the typical building discussed in the previous
section is built on the basis of the investigation on tens of offices
in Shanghai, which could basically contain and represent this given
actual building, we apply the results of the aforesaid sensitivity
analysis to this case study, and some important input parameters
are set accordingly, as shown in Table 9.
PSO algorithm External pr

New particle
(data group)

Actual en
consump

CV(RMSE)

Fig. 4. Schematic diagram of the coupled optim
The influence of the weather conditions on energy use should
be ruled out. Because the actual electricity usage data of the build-
ing was measured in 2013, the typical meteorological year (TMY)
weather data of Shanghai, in which the data of dry-bulb tempera-
ture and relative humidity are replaced by the corresponding real-
time data in 2013, were used in the initial model run.
3.2. Initial results

After the initial simulation, the comparison of the total energy
consumption data between the actual and simulated case is shown
in Fig. 6. Some monthly errors were very high, larger than 10%,
indicating the necessity of calibration.
3.3. Calibration process and results

Based on the established rule estimation, lighting and equip-
ment densities can be calibrated by rule estimation, because the
lighting and equipment densities directly change the electricity
use, which can be easily identified. Other parameters may change
the electricity use indirectly and may influence each other mutu-
ally, which is intricate for simple rules to calibrate. As presented
in the results of the calibration programs, the lighting density
should be tuned to 0.81 times the original data, and the tuning
coefficient for the equipment density should be 0.87.

Figs. 7 and 8 depict the results of the rule-estimation calibra-
tion. For the lighting density, the error between the calculated
and actual electricity consumption demonstrated a decrease of
7.3%. Meanwhile, a similar error decline of 7.2% was obtained for
the equipment electricity consumption.

The results show that the calibration error in the section of
lighting and equipment met the demand (less than 15%), but we
cannot achieve a satisfactory result in the air conditioning part
and hence the overall system. Thus, further optimization is
required to achieve more precise calibration results. The PSO algo-
rithm is used to calibrate all of the system parameters, except the
lighting and equipment density. For the weight coefficients in the
objective function, K2 is set as 1, and the others are zero. The error
criterion for iterative termination is set to 15%.

After four iterative calculations within one hour, the error of the
electricity consumption in the air conditioning system was 11.6%,
and the error of the total electricity consumption dropped to
6.1%. As a result, the errors of all four parts met the range of stan-
dard allowance using this approach.

The comparison of the monthly electricity usage of the total
electricity consumption after the model optimization is shown in
Fig. 9. Tables 10 and 11 show the errors of the end-use electricity
data and the input parameters variation before and after calibra-
tion. The proposed automatic calibration program achieves good
prediction accuracy.
ogram Compute core of 
DOE-2

ergy 
tion

New
inp file

Simulated energy 
consumption

ization algorithm and simulation model.



Fig. 5. User interface of the automated model calibration tool.

Table 9
Model input parameters.

Category Input parameters Values

Envelope External wall U-value [W/(m2 K)] 1.00
Windows U-value [W/(m2 K)] 3.00
Window SC 0.50
Window-wall ratio East 0.47

South 0.29
West 0.37
North 0.29

Internal load Lighting density [W/m2] 15.00
Equipment density [W/m2] 10.00
Occupant density [m2/p] 6.00

HVAC system Indoor set point [�C] Heating
26.00

Cooling
20.00

Fresh air [m3/(p h)] 30.00
Chiller COP 3.40
Fan efficiency 0.63
Pump efficiency 0.70

Fig. 7. Comparison of the simulated and measured lighting electrical usage in 2013
using rule-estimation calibration.

Fig. 6. Comparison of the simulated and measured whole building electrical usage
in 2013.
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4. Discussion

This paper presents an inclusive automated optimization
method for building energy simulation model calibration, which
is developed on the sub-metering data. This methodology is com-
patible with some other advanced manual approaches. It could
serve as a useful assistant for the experts to improve the efficiency
of tuning relative input parameters. The novelty of this paper is
elaborated as follows:

(1) The optimization-based automated calibration method
presented in this paper is introduced to supplement and
aid manual calibration by transforming the tuning process
from the human brain to a computer to create a more effi-
cient calibration that is less time-consuming. Because of
the combination of various physical information and profes-
sional experience in manual calibration, this optimization



Fig. 8. Comparison of the simulated and measured equipment electrical usage in
2013 using rule-estimation calibration.

Fig. 9. Comparison of the simulated and measured whole building electrical usage
in 2013 using PSO calibration.

Table 10
Model errors of each end-use before and after calibration.

CV (RMSEmonth)
[%]

Air
conditioning

Lighting Equipment Total Average

Initial model 29.90 24.60 16.80 9.70 20.20
Rule-estimation

calibration
34.80 7.30 7.20 15.60 16.20

PSO calibration 11.60 7.30 7.20 6.10 8.00

Table 11
Model input parameters before and after calibration.

Parameters Values

Before calibration After calibration

External wall U-value [W/(m2 K)] 1.00 1.35
Windows U-value [W/(m2 K)] 3.00 4.80
Windows SC value 0.50 0.67
Lighting density [W/m2] 15.00 12.20
Equipment density [W/m2] 10.00 8.70
Personnel density [m2/P] 6.00 9.30
Pump efficiency 0.70 0.90
Chiller COP 3.40 3.00
Heat pump efficiency for cooling 3.40 3.00
Heat pump efficiency for heating 0.63 0.82
Fresh air [m3/(P h)] 30.00 40.00
Heating set point [�C] 20.00 23.20
Cooling set point [�C] 26.00 26.00

T. Yang et al. / Applied Energy 179 (2016) 1220–1231 1229
automated method, relying on mathematical and statistical
techniques, cannot fully replace manual calibration. How-
ever, the advantages of automated calibration manifest in
its efficiency and the accuracy of computers. To achieve its
application, we compile an automated calibration program
and perform it in a case study.

(2) Before implementing the optimization automated process, it
is necessary to decide which parameters to tune and by how
much, which we set it as ‘‘pre-processing”. Apart from sensi-
tivity analysis presented in this paper, this action makes full
use of the modelers’ domain knowledge, and specific meth-
ods in various given situations have been widely explored,
such as a bottom-up calibration method based on hourly
energy consumption data [19], a simultaneously calibrating
framework on the multi-level [22], and a pattern-based
approach [66]. Thus, the flexibility of pre-processing greatly
expands the scope suitable for the optimization automated
method.

(3) Because the fewer parameters the tuning process involves,
the more effective the numerical optimization is, to guaran-
tee the efficiency of the automated optimization method, the
recommended number of input parameters is no more than
25 [28]. The pre-processing will alleviate this difficulty. The
sensitivity analysis can identify the influential parameters to
determine which can be tuned. This analysis is always devel-
oped based on several prototypical or actual buildings.

(4) With the improvement of the monitoring systems in build-
ings, the importance of sub-metered energy usage has
emerged, which is an effective aid in making the calibrated
model more accurate. Four types of main sub-items, includ-
ing lighting, equipment, cooling, and heating, are investi-
gated in this paper and could be simultaneously calibrated
through a weighted function.

5. Conclusion and future work

In this paper, we propose an inclusive optimization automated
approach to calibrate the building energy model with sub-metered
data, and a detailed case is presented to illustrate this procedure.
The result of calibrating the energy model for an actual building
in Shanghai is that the electricity consumption from HVAC, lighting
and equipment of the simulated model matches the actual moni-
tored data with 11.6%, 7.3% and 7.2% CV (RMSE), respectively,
and the total electricity consumption with 6.1%.

In contrast to previous studies, the intent of this paper is to
explicitly orient the position of optimization automated approach
in the calibration procedure. This automated optimization calibra-
tion is more likely to act as a supplementary method, rather than
substitution, to optimize the existing manual calibration by the
path of transforming manual adjustment to an automated process,
thus greatly improving the accuracy and efficiency of calibration.
Moreover, this inclusive methodology is greatly compatible with
other advance manual calibration approach and assist the model-
ers in improving the efficiency of the tuning process. It is important
to make the best of the advantages of efficiency and flexibility in
the automated computer procedure, thereby avoiding the result
of accurate mathematical matching but inaccurate physical match-
ing. With a view to the increasing improvement of the monitoring
system in buildings, another novelty of this paper is to present a
creative method to consider the simultaneous calibration of four
types of sub-items - lighting, equipment, cooling, and heating.
More data measured from the monitoring system will contribute
more to the fidelity of the building energy simulation.

During the entire calibration procedure, the pre-processing of
determining which parameters to adjust and by how much before
tuning can be completed by various other advanced manual
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methods. The PSO algorithm is applied in this paper as an auto-
mated optimization method, but other techniques different from
this adopted method could be applied to refine the parameters-
tuning process. Furthermore, not restricted to the ERR or CV(RMSE)
solely, some comprehensive weighted cost functions, including the
responding weighted ratios, are worthy of more detailed research.

In spite of the merits in this proposed methodology, there exist
still some problems to tackle. Firstly, the operational schedule is
not considered into the process of automated calibration. We fix
it manually now, as accurately as possible based on the general
design standard and investigation information. Besides, this pro-
cess tends to be a deterministic approach to search a single set of
best-fitting parameters. The drawback is the limited final targets
of optimization, unable to cover all the uncertain bounds of the
given model. To solve this problem, Bayesian calibration [67] could
be introduced in the ‘‘post-processing” in the future studies.

Overall, despite these limitations, the mathematical
optimization-based automatic calibration method has a significant
advantage in the specific parameters-tuning process. With the con-
venience of computer program, it could assist the modelers in
improving the efficiency of the tuning process. For its limitations,
as long as we implement some auxiliary methods, including sensi-
tivity analysis and Bayesian calibration, into the building energy
simulation calibration, the deficiency of the optimization method
will be effectively eliminated in future works.
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